
Not for distribution or attribution: for review purposes only

IEEE Internet Computing Paper Submission

Title: Event-Based Object Middleware: Towards a connection bus for distributed
components

Authors: Pedro García López, Carles Pairot Gavaldà, Antonio Gómez Skármeta

Contact Address:

Pedro García López,PhD
Department of Computer Engineering and Mathematics
Office 238
Campus Sescelades
Avinguda dels països catalans, 26
43007 Tarragona, Spain
Phone: +34 977 558 510
Fax: +34 977 559 710
Email: pgarcia@etse.urv.es
Web: http://www.etse.urv.es/~pgarcia/

Event-Based Object Middleware: Towards a
connection bus for distributed components

Pedro García López, Carles Pairot
Universitat Rovira i Virguli

Antonio Gómez Skármeta
Universidad de Murcia

Abstract

Object-oriented middleware is a mature
technology that provides powerful abstractions
for developing complex distributed
applications. Event-based or message oriented
middleware has received considerable
attention for its decoupled nature that naturally
fits asynchronous one-to-many interactions
and highly dynamic distributed applications.
Nevertheless, the marriage of the best of both
worlds is far from been accomplished.

In this paper, we present ERMI, a distributed
object technology that constructs on top of
publish/subscribe event systems. This
approach provides innovative benefits like
object mobility, object replication, distributed
interception, system reflection, object
discovery and high performance asynchronous
one-to-many notification. We have also
developed a prototype event connection bus
that extends publish/subscribe systems to
include new services focused on distributed
components like: publisher registration,
publisher disconnection events, event
interception and a meta-information
connection service. We believe that such
middleware is a solid substrate for future
distributed component infrastructures.

Keywords

Event-based middleware, distributed objects,
component connection and assembly.

1. Introduction

Object oriented middleware is a mature
technology for developing distributed
applications. Its widespread acceptance in
distributed settings has led to a considerable
level of sophistication and support by different
vendors.

The distributed object-oriented frameworks
that get the most attention are those that model
messaging as method calls. These systems are
often called remote procedure call (RPC)
systems. The major benefit of these systems is

that they make remote procedure (or method)
calls appear to be local procedure calls (LPCs).
This represents a powerful abstraction that
considerably simplifies development of remote
applications.

Message oriented middleware (MOM) has
recently received considerable attention
because of its decoupled nature that nicely
solves asynchronous one-to-many interactions
and highly dynamic distributed environments.
In contrast to RPCs, MOMs don't model
messages as method calls; instead, they model
them as events in an event delivery system..
All applications communicate directly with
each other using the MOM. Messages
generated by applications are meaningful only
to other clients because the MOM itself is only
a message router

Nevertheless, distributed object-oriented
frameworks and MOMs are still almost
isolated worlds that do not fully benefit from
each other unique advantages and concepts.
We believe that the marriage of the best of
both worlds is far from been accomplished and
constructive synergies still remain to be
developed.

However, object middleware is evolving to
incorporate concepts from MOMs and we can
outline interesting examples found in existing
systems. COM connectable objects, J2EE
Message Driven Beans, and OMG Corba
Component Model sources and sinks permit
distributed components to be activated by and
trigger events to a messaging middleware.

In this paper, we go further in the integration
of object middleware and event-based systems.
We propose a distributed object middleware
that is completely constructed on top of a
publish/subscribe notification middleware. The
underlying messaging middleware provides a
decoupled abstraction that permits innovative
distributed services like object mobility, object
replication, distributed interception, system
reflection, object discovery and high
performance asynchronous one-to-many
notifications.

Furthermore, while developing this object
middleware, we have found important lacks in
traditional event middleware. As a
consequence, we have also developed a
prototype event connection bus that extends
publish/subscribe systems to include new
services focused on distributed components
like: publisher registration, publisher
disconnection events, event interception, and a
meta-information connection service. We
believe that such middleware is a solid
substrate for future distributed component
infrastructures.

The rest of the paper is organized as follows:
Section 2 describes ERMI (Event Remote
Method Invocation), a complete object
middleware constructed on top of
publish/subscribe event systems. This section
describes the major benefits and innovative
services of this middleware and it also
discusses major drawbacks related to this
technology. Section 3 presents the Connection
bus, an extended event system including new
services for distributed components. Section 4
presents and compares related work and
finally, in Section 5, we draw conclusions
from this research and present future work
trends in this line.

2. ERMI- Event Remote
Method Invocation

ERMI is a distributed object middleware
constructed on top of publish/subscribe event
systems. This design decision implies
modelling method calls as events and
subscriptions over the underlying messaging
middleware. We justify this approach because
of the clear benefits and synergies obtained
with the combination of both conceptual
models:

• For object middleware developers, the
main advantages derive from the
decoupled nature of the MOM layer.
This decoupled nature fuels
innovative services like object
mobility, object replication,
asynchronous one-to-many
notification, object discovery and
system reflection.

• For MOM middleware developers,
the main advantage resides in the
higher-level abstraction obtained by
using object middleware and method
calls. Low–level event programming
and message protocols are thus
handled by the middleware (object
stubs and skeletons).

ERMI Architecture

For the sake of simplicity, we have inspired
our design in the Java RMI object middleware.
Nevertheless the proposed model is generic
and could be developed in any language and
distributed technology.

To mimic RMI, we have developed quite
similar APIs and tools with the aim of
simplifying the learning curve for new
developers. In this line, we provide an
ermi.Remote interface, ermi.RemoteException
class, and ermi.Naming class to locate objects
in the registry. We also provide an ermic tool
that generates Stubs and Skeletons for remote
objects. Furthermore, ERMI currently provides
many features found in RMI like Remote
Exception handling, pass by value and by
reference, and dynamic class loading.

The main difference with RMI resides of
course in the communication layer located in
Stubs and Skeletons. While in RMI a TCP
Socket is established between the client (stub)
and the server (Skeleton), ERMI Stubs and
Skeletons both connect to an event service, and
they must use subscriptions and events to
communicate the method calls and results.

As we can see in figure 1 (left side), a
synchronous call from the stub to the skeleton,
implies two different subscriptions: a skeleton
subscription for the remote call (object UID)
and a stub subscription (object UID +
RESULT + stub ID) for the result of the call.
Both skeletons and stubs also send
notifications that match their respective
subscriptions. Although this solution seems
complex, it is the only way to mimic
synchronous blocking calls on top of an
asynchronous non-blocking event middleware.
In each method call, Stubs must then wait
until the result event comes from the event
service.

Figure 1. Architecture of synchronous and
asynchronous subscriptions and notifications

In the other hand, asynchronous calls naturally
fit with the underlying event middleware. As
we can see in figure 1 (right side), an
asynchronous notification call to n clients, will
imply that all stubs will subscribe to the same
topic (object UID + MethodID) and the
skeleton will notify this event, matching the
appropriate subscription. This decoupled
model permits one-to-many notifications in a
way that it is natural for the underlying
asynchronous messaging middleware.

It is obvious that the main architectural
difference is the existence of a new
intermediary: the event service. Clients and
server do not directly talk to each other, but
instead make use of the underlying decoupled
abstraction. The new intermediary implies a
clear requirement: all client and server
references first need the location of the event
service to begin any communication. Because
of that, we have decided to include event
service location in every object reference along
with its UID and class metadata.

ERMI extended functionality

Once described the ERMI internal architecture,
we now present the innovative services that we
have built on top of our middleware. The
presented services can be easily constructed
because of the decoupled nature of the
underlying event infrastructure.

We outline six interesting services:

• Object mobility
• Distributed interception
• Asynchronous one-to-many

notification.
• System reflection and monitoring
• Object discovery
• Object replication and Object caching

Object Mobility refers to the possibility of
moving object servers to different locations
and continue handling client requests. Object
mobility is easily accomplished in ERMI by
serializing the object implementation (that
inherits from Skeleton) to the remote endpoint.
Before serialization, the Skeleton removes all
subscriptions to the Event service, and, upon
arrival to the remote endpoint, the Skeleton
reconnects to the event service and turns to
create the subscriptions in the new location.
Object clients (stubs) remain unaware of these
changes since they maintain their current
subscriptions unaffected.

In traditional object middleware, the strong
coupling between clients and servers through
TCP connections would require to advise all
clients to reconnect to the new server location
or use instead ad-hoc remote proxies. The first
solution does not scale for a high number of
clients and the second one is only an ad-hoc
façade not suitable for unexpected scenarios.
Our decoupled approach permits flexible
object mobility and it could be used in
different settings like server load balancing,
spontaneous systems, agent systems and for
highly dynamic and manageable remote
services.

Distributed interception is an interesting
service for applying connection-oriented
programming [9] concepts in a distributed
setting. With this service, it is possible to
reconnect and locate type-compatible
interceptors at runtime in a distributed
application. Again, our decoupled model
allows us to create custom Skeletons and Stubs
for remote classes that can intercept calls to a
running remote object. We however need to
change the subscriptions of both Interceptor
skeletons and Intercepted remote objects. We
even demand that a queue of interceptors can
be established or removed, so our skeletons
must have a relatively complex message
protocol able to permit such requirements. As
we will explain further in section 3, distributed
interception can be simplified if event systems
would give us the required subscription filter
functionality.

Again, distributed interception is hard to
implement in strongly coupled object systems
where both clients and servers must be notified
of object changes. If a TCP connection is
established among many clients and an object
server, the insertion of a remote interceptor
would imply that all clients should reconnect
to the new interceptor, and to bind this
interceptor to the remote server. Our decoupled
solution is clearly more scalable and do not
affect client connections (represented as
subscriptions).

Asynchronous one-to-many notification is a
distributed object event service that fits
gracefully with our overall model. As
explained in figure 1.b, all clients (stubs)
subscribe to the same topic (UID +
METHODID) and the object server (skeleton)
publishes events matching that subscription.
Obviously, this scheme scales better than point
to point connections to any interested client
and better performance is easily achieved by
event systems.

Several messaging infrastructures employ
multicast IP to route these events and thus
improving the overall traffic and architecture.

Figure 2. Java naming conventions in
asynchronous notifications.

In the design of this event system we want to
stay close to the programming language
chosen. Because of this, our ermic generates
stubs and skeletons using the same naming
notations employed in the Java language for
asynchronous notifications. As we can see in
the Figure 2, the Sprite interface includes
methods for registering client interest in Sprite
state changes. The generated stub code creates
the appropriate subscription and thus
decoupling server from clients

As stated before, this object service is usually
solved in distributed object middleware (as
JINI) with the use of synchronous calls to all
the interested clients. This approach is clearly
less scalable and hinders the asynchronous
nature of one-to-many notifications.

System reflection and monitoring can be easily
achieved when all object communications
traverse the event service. First of all, the event
service can obtain a snapshot of the relation
graph of clients and servers from a running
system. In section 3 we will describe an
extended service that can give us even more
meta-information about the distributed
applications and components. In the other side,
system monitoring is straightforward simply
by listening to events in the messaging
middleware. Complex event filtering can also
be applied to isolate concrete parts of a
distributed application.

In traditional object middleware, system
reflection and monitoring requires ad-hoc
external intermediaries that must be notified of
both client-server connections and distributed
interactions among running components. In

our case, the intermediary is the underlying
event middleware, that is in fact ideally aimed
for monitoring and filtering purposes.

Object replication and Object caching are
added functionalities derived of the flexibility
of the event bus. Object replication is
accomplished generating special stubs that talk
message protocols through the event system in
order to main consistency and data among the
remote object replicas. There is not a central
object server so any of the clients could fail
and the state is preserved. Object caching is
also accomplished generating special stubs for
object caches. These caches listen for state
changes in a central object server in order to
maintain a local cache of the object data.
Object state changes are still routed to the
central server to maintain consistency. Both
object replication and object caching benefit
from the event bus as the communication
channel to establish message protocols and
transmit state changes to interested stubs.

It is obvious that both object replication and
caching can be easily constructed on top of
existing object middleware. Nevertheless,
both services share a common requirement:
they need an efficient communication channel
to route state changes or consistency protocols
among the interested parties. Whereas this
communication channel can be architected on
top of one-to-one synchronous calls, it fits
better with asynchronous one-to-many event
systems.

Finally, object discovery consists of using
predefined Object UIDs to locate remote
objects in an event bus. In this case, clients
locate objects servers with Ids associated to the
object subscription. Object discovery is an
extremely useful functionality in highly
dynamic spontaneous scenarios such as
wireless or mobile networks.

Object discovery is usually solved in existing
systems by means of the so named lookup
services. In this line, JINI lookup service
employs UDP broadcast to automatically
discover services in the local environment. In
fact, this is a nice solution that involves a one-
to-many channel like UDP broadcast.
Although it is a good solution in local area
networks, it is not appropriate for remote
endpoints where UDP multicast or broadcast
are not available. In these situations, using a
distributed event service (TIBCO for example)
would make the lookup service really
accessible to remote locations.

 .

3. The connection bus

The initial version of ERMI has been
constructed on top of existing messaging
middleware like Elvin and the Java Message
Service. Due to design limitations found in
traditional event middleware, we have decided
to create an extended messaging service: the
Connection bus. This new event system
provides extended functionality ideally suited
for supporting distributed component
interactions.

First of all, the connection bus can be
constructed on top of a topic or subject-based
event system. Our bus offers topic-based
filtering in order to improve event delivery
times and thus obtaining high performance.
Nevertheless, this service could use content-
based event addressing like Elvin and thus
allowing more powerful filtering services.

Apart from the basic publish / subscribe
functionality provided by event systems, we
require at least four additional services:

• Publisher registration
• Publisher disconnection events
• Event interception
• A meta-information connection

service

These four services are specially designed to
support distributed object middleware. We
believe that event systems may include these
functionalities in order to provide better
support for distributed component interactions.

Publisher registration refers to the case when
it only exists one publisher for a given topic.
This is a typical scenario in object middleware
when the object server or client are the only
publishers in a given topic. The primitive
registerPublisher(topic, Info) informs the
event service that a given client will be the
only publisher in a topic, and it can also
include additional data in a dictionary (Info)
like type or method information.

The information provided by registerPublisher
to the Event system is very useful for two main
reasons: first of all, the messaging middleware
can optimize event delivery from the publisher
to all subscribers benefiting from the
underlying network topology. Furthermore,
this information contained in the event system
is key for the connection service to define
component relations and interactions.

Carzaniga’s Object of Interest is possibly the
more related concept to publisher registration
found in the literature. Nevertheless,
Carzaniga’s approach is focused on optimising
event delivery from publisher to subscribers. It
thus not provide meta-information for defining
component connections

Major drawbacks

Our approach presents two major drawbacks that must be
considered:

• Performance loss in synchronous calls
• The event middleware can become a bottleneck

The first problem is in fact the more severe for the use of
our model. Modelling synchronous calls on top of an
asynchronous service implies an important penalty in
performance. Our initial tests prove that Java RMI spends an
average of 10 ms in a method call while ERMI (over our
Connection bus) can spend from 15 to 35 ms.

It is however clear that a simple client-server synchronous
application will perform better in a traditional object
middleware. Event-based object middleware has sense when
the distributed applications need special features like server
mobility, code replication, dynamic systems, system
monitoring and reflection, or distributed interception. There
are usage scenarios where this middleware can be specially
appropriate like agent systems, mobile environments or
dynamic spontaneous systems like the ones solved by JINI
middleware. In this scenarios, the performance loss in
synchronous calls is then justified by the other services.

The second problem is the possible bottleneck that can be
produced when all communications are routed through the
Event middleware. This is a less important problem, since
Event systems may not strictly follow a centralized
client/server approach. Many systems like TIBCO
construct on top of Multicast IP and server federations in
order to scale to a high number of publishers and
subscribers.

Furthermore, we have also developed a decentralized
ERMI version called DERMI [7]. DERMI works on top
of a peer-to-peer overlay network and it thus achieves
complete system decentralization. This implementation
works on top of the Pastry overlay network and extends
the Scribe [2] multicast mechanism to provide the
services presented in this paper. It also provides other
programming abstractions such as anycall or manycall,
which allow the programmer to make calls to groups of
objects without taking care of which of them responds
until a determinate condition is met. See [5] and [7] for
further information about DERMI

Figure 3. Connection bus services

Publisher disconnection events is an
interesting service very related to publisher
registration. When a single publisher exists in
a topic, subscribers may be interested in
obtaining information events about the current
state of the publisher. The event system can
thus notify interested subscribers of events like
publisher disconnection, publisher
deregistration, or publisher crashes and
connection errors (see figure 3)

This service is extremely useful in object
middleware, when clients are interested in
server crashes or server disconnections. Upon
arrival of these events from the connection
bus, clients can then perform sanity actions or
recovery mechanisms. Publisher disconnection
information is even more important if we
consider that ERMI servers and clients are not
tightly coupled but use instead the underlying
decoupled middleware.

Event interception is a service specially
designed to support the distributed component
interception feature presented in Section 2. The
new primitive addInterceptor(topic,
Interceptor) permits that any event sent by a
publisher is first routed to one or more
interceptors arranged in an ordered queue.
Once these filters perform event
transformations or custom actions, the
resulting event is then routed to the targeted
subscribers. As we see, the event traverses the
interceptor queue and then is routed to all
subscribers (figure 3).

This service considerably simplifies object
skeletons and stubs in our ERMI middleware
when performing distributed interception. The
burden of distributed interception is then
placed in the event middleware. Furthermore,
as we explained in Section 2, the event system
can locate interceptors in selected endpoints in

order to improve the overall performance and
also reducing event roundtrips.
Finally, the meta-information connection
service is a key actor of our overall
architecture. Because all component
communications are routed through the event
intermediary, this is a suitable point to store
component relations and connections at
runtime.

In fact, most of the connection information is
already stored in the event system by means of
subscription information. The event
middleware can tell us what clients are
connected to a server thanks to their existing
subscriptions. Furthermore, the added type
information included in the registerPublisher
primitive allows us to know what is the class
type that binds a server and a client. With all
this information, the event system can give us
a complete snapshot of the distributed
connections and interactions between
components at runtime.

The information provided by the connection
service can be very useful to better understand
and introspect a distributed environment. This
information could serve to relocate
components, to perform load balancing, to
change topologies, or even to internally
optimise event dispatching depending on client
location and bandwidth.

We believe that the proposed connection bus
extends existing event systems with useful
functionalities for distributed components.
Nevertheless, the decoupled nature of the event
middleware remain unaffected. Furthermore,
the four services could also be used by non-
object middleware in distributed applications.

4. Related Work

The increasing popularity of the
publish/subscribe paradigm has led to
interesting research in the last years. In this
line, several projects have applied event-based
decoupled abstractions to heterogeneous
domains.

ECO (Events-Constraints-Objects) [8] is an
interesting approach to integrate events with
distributed objects. Objects in ECO
communicate by announcing events and by
processing those events which has been
announced. With the keywords event,
outevents and inevents every object specifies
its event dispatchers and interests.
Furthermore, constraints (pre and post) permit
to insert named conditions which control the
propagation and handling of events.

ECO defined an innovative and elegant object
model that considerably improves
development of distributed applications.
Furthermore, the constraint abstraction is a
powerful concept for solving synchronisation
and timing restrictions. Because constraints are
processed at the start and at the end of the
event handler, they permit some kind of event
interception.

Nevertheless, ECO is not a complete
distributed object middleware in the sense that
is focused in triggering and handling of events,
and not in remote method invocations. This
implies a lower level abstraction than ERMI,
that still requires considerable effort by
programmers in order to handle and produce
remote events. We move the event burden to
the underlying skeleton and stub middleware,
and we define our interceptors at method level.
Pre and post constraints is a good idea that will
influence considerably our interceptor design
but in our case focused on method invocation.
To conclude, ECO provides interesting
abstractions, but is still focused on event
handling and does not offer ERMI and
Connection bus extended functionalities for
distributed components.

Regarding object mobility on top of
publish/subscribe systems, there exist several
approaches like Siena [1] and JEDI [3].
Again, these systems are more focused on
event handling in remote endpoints. An object
can be moved to remote locations with explicit
methods (moveIn or moveOut) and continue
handling events in the remote endpoint. Our
approach focuses on object server mobility and
implies that after moving a server, it will

continue handling client method invocations or
producing asynchronous one-to-many
invocations. Our design is focused on moving
stubs (pass by reference) or skeletons and
implementations (object servers) in order to
allow object mobility. Again, the event
handling burden is solved by our middleware.

Regarding interceptors, we have been
influenced by Java Distributed Event
Architecture. More concretely, we have refined
the so called “Distributed Event Adapters” in
order to apply this concept to remote method
invocations and distributed component
interception for both synchronous and
asynchronous calls. ECO pre and post
constraints also constitute an interesting
contribution to this concept.

Siena [1] is also an important influence for our
overall work. Siena’s advertisements
influenced the design of our connection bus
registerPublisher feature. Nevertheless, Siena
advertisements are focused on improving event
dispatching from publisher to subscribers,
whereas our primitive includes additional
information (class and type information) that is
useful for our meta-information connection
service.

Finally, the GridCCM [4] project is an
interesting approach for developing parallel
and distributed applications in the CORBA
component model platform. GridCCM
constructs on top of the underlying MPI
(Message Passing Interface) and it defines an
elegant architecture for distributed and parallel
components. Nevertheless, we believe that an
extended publish /subscribe system like our
connection bus is conceptually superior to the
MPI middleware for gluing distributed
components. Furthermore, our ERMI and
DERMI implementations solve problems in
different settings than the GridCCM platform.

5. Conclusions

The paper presents a distributed object
middleware constructed on top of a
publish/subscribe notification middleware. We
argue that the underlying decoupled
abstraction fuels innovative services like server
mobility, object replication and caching ,
distributed interception, system reflection and
monitoring, object discovery and high
performance asynchronous one-to-many
notification. Whereas many of them can be
architected on top of tradicional synchronous
calls, they fit and scale better with one-to-
many asyncronous event services.

Furthermore, we propose several extensions to
traditional event systems in order to better
support event-based object middleware. The
principal extensions are: publisher registration,
publisher disconnection events, event
interception and a meta-information
connection service. Our prototype event
service that offers such functionalities is called
the connection bus. This name is inspired in
the connection-oriented programming
paradigm focused on component assembly. We
believe that our approach creates a seamless
connection service that can improve
component assembly in highly dynamic
environments.

Our proposed middleware is specially useful in
dynamic settings where the decoupled
abstraction can show its real benefits. System
introspection and monitoring, distributed
interception, mobile servers, agent systems and
spontaneous mobile environments are suitable
scenarios for our ERMI middleware.

One of the interesting points of our approach is
that our conceptual model does not imply a
client/server event service. We have also
developed a decentralised version of ERMI on
top of a peer to peer overlay network,
demonstrating its application in heterogeneous
settings.

We foresee interesting research in the
confluence of decoupled event services and
distributed component infrastructures. We also
believe that many settings can really benefit
from this decoupled model. More concretely,
connection-oriented programming and aspect
oriented programming could use and improve
our distributed interceptors and connection
service.

ERMI, DERMI and the Connection bus [5] are
open source projects with stable versions
including samples, documentation and unit
tests. We continue development of these three
environments in order to provide other
services like persistence, security and a
distributed container model. We also begin to
work with class tagged attributes to produce a
more elegant generation code mechanism at
the level of method calls. We also plan to
replace naming conventions in Remote
interfaces with attributes selecting different
parameters like replication, notification,
caching, etc. Our future work implies
constructing a component container platform
for distributed components on top of the
ERMI/DERMI implementation and to explore

new application settings like agent systems and
collaborative applications.

To conclude, although much work remain to
be done, we consider that distributed
components and decoupled event systems still
have constructive synergies to be explored.

6. Bibliography

[1] A. Carzaniga, D.S. Rosenblum, and A.L.
Wolf. "Design and Evaluation of a Wide-Area
Event Notification Service". ACM
Transactions on Computer Systems, 19(3):332-
383, Aug 2001.

[2] M. Castro, P. Druschel, A-M. Kermarrec
and A. Rowstron, "SCRIBE: A large-scale and
decentralised application-level multicast
infrastructure", IEEE Journal on Selected
Areas in Communication (JSAC), Vol. 20, No,
8, October 2002.

[3] G. Cugola, E. Di Nitto, and A. Fuggetta,
“The JEDI event-based infrastructure and its
application to the development of the OPSS
WFMS''. In Transaction of Software
Engineering (TSE), vol. 27, num. 9, September
2001.

 [4] Alexandre Denis, Christian Pérez, Thierry
Priol, and André Ribes. Process Coordination
and Ubiquitous Computing, chapter
Programming the Grid with Distributed
Objects, pages 133--148. CRC Press, 2003.

[5] ERMI, DERMI and CBUS site.
http://ants.etse.urv.es/ERMI/

 [6] P. Eugster, R. Guerraoui, and C. Damm.
On objects and events. In Proceedings for
OOPSLA 2001, Tampa Bay, Florida, October
2001.

[7] Carles Pairot, Pedro García, Antonio F.
Gómez Skarmeta. DERMI: A Decentralized
Peer-to-Peer Event-Based Object Middleware.
Submitted to IEEE ICDCS 2004.

[8] G. Starovic, Vinny Cahill, Brendan
Tangney: An Event Based Object Model for
Distributed Programming.OOIS'95, 1995
International Conference on Object Oriented
Information Systems, 18-20 December 1995.

[9] C. Szyperski. “Component Software.
Beyond Object Programming.” Second
Edition. Pearson Education. 2002.

