
PlanetSim: A New Overlay Network
Simulation Framework

Pedro García, Carles Pairot, Rubén Mondéjar, Jordi Pujol,
Helio Tejedor, and Robert Rallo

Department of Computer Science and Mathematics, Universitat Rovira i Virgili,
Avinguda dels Països Catalans 26, 43007 Tarragona, Spain

{pgarcia, cpairot, rrallo}@etse.urv.es

Abstract. Current research in peer to peer systems is lacking appro-
priate environments for simulation and experimentation of large scale
overlay services. This has led to a plethora of custom made simulators
that waste development resources and hinder fair comparisons between
different approaches. In this paper we present a new simulation / ex-
perimentation framework for large scale overlay services with three main
contributions: i) provide a unifying approach to simulation/ experimen-
tation that eases the transition from simulation to network testbeds, ii)
it clearly distinguish between the design of overlay algorithms (key based
routing), and the applications and services built on top of them, iii) offer
a layered and modular architecture with clear hotspots, and pervasive
use of design patterns. We have used PlanetSim to implement and evalu-
ate overlay networks such as Chord and Symphony, and overlay services
such as Scribe application level multicast, and keyword query systems
over distributed hash tables.

1 Introduction

In the last years, we have experienced an increasing interest in peer to peer
systems from research settings but also from commercial vendors because of its
mainstream use in the Internet. Furthermore, the growing bandwidth and com-
puting power in the edges of the network foresee innovative massive applications
of peer to peer technology.

We can classify peer to peer networks as structured or unstructured, depend-
ing on the way they are connected and how the data they contain is arranged. In
a structured network the connections between nodes are of some regular struc-
ture, which allows deterministic and optimal lookup hops (typically O (log N)).
In contrast to structured networks, nodes in unstructured networks do not share
a regular structure and a unified identifier space. Lookups are thus normally
achieved by flooding and using replication in the network.

Structured P2P networks are now a hot research topic and they represent
an interesting platform for the construction of resilient, large-scale distributed
systems. Moreover, structured networks can be used to construct services such

T. Gschwind and C. Mascolo (Eds.): SEM 2004, LNCS 3437, pp. 123–136, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



124 P. García et al.

as distributed hash tables (DHT), scalable group multicast/anycast (CAST)
and decentralized object location and routing (DOLR). We focus our research in
PlanetSim on structured overlays and the design and development of distributed
services on top of them.

In general, both structured and unstructured networks are often called overlay
networks because they are built on top of an existing network, usually on top of
the Internet. At the moment, P2P networks usually do not map the underlying
network or even do not take the layout of these networks into account. As we
can see, these overlay networks are thus working at the application layer, and
use transport protocols like TCP or UDP as communication channels between
inter-connected peers.

P2P researchers are usually more interested in algorithm verification (number
of hops, node stress, link stress) than in simulating the whole TCP/IP stack. As a
direct consequence, researchers find existing network simulators too specific and
low-level. Besides, those simulators exhibit a considerable lack of scalability for
thousands of nodes. Another key problem is that the transition from simulated
code to experimental code is still quite difficult to achieve.

This has led to the development of ad-hoc simulators (SimPastry, FreePas-
try, p2psim, DKS, Tapestry) from a high number of research groups, wasting
expensive resources in infrastructure code and avoiding clean comparisons be-
tween different algorithms. With minor differences, all these ad-hoc simulators
are poorly documented and do not show clear-cut software engineered designs.
Due to these approaches it is quite difficult to reuse code and even harder to
extend those simulators.

To address these limitations, we present PlanetSim, an object oriented sim-
ulation framework for overlay networks and services. The novel contributions of
PlanetSim are the following:

1. PlanetSim presents a layered and modular architecture with well defined
hotspots documented using classical design patterns. This can considerably
reduce the learning curve and thus ease the development of new overlay
services and algorithms.

2. PlanetSim clearly distinguishes between the creation and validation of over-
lay algorithms (Chord, Pastry) and the creation and testing of new services
(DHT, CAST, DOLR) on top of existing overlays. Our layered approach
cleanly decouples services built in the application layer using the standard
Common API for structured overlays [2], and peer to peer algorithms built
in the overlay layer.

3. PlanetSim also aims to enable a smooth transition from simulation code
to experimentation code running in the Internet. Because of this, we pro-
vide wrapper code that takes care of network communication and permits
us to run the same code in network testbeds such as PlanetLab. Further-
more, because we follow FreePastry’s implementation of the Common API,
our overlay services can easily run on top of Rice’s FreePastry Java code.
This enables complete transparency to services running either against the
simulator or the network.



PlanetSim: A New Overlay Network Simulation Framework 125

PlanetSim has been developed in the Java language to reduce complexity
and smooth the learning curve in our framework. We however have profiled
and optimised the code to enable scalable simulations in reasonable time. To
validate the utility of our approach, we have implemented two overlays (Chord
and Symphony) and a variety of services like CAST, DHT, and DOLR. We have
proved that PlanetSim reproduces the measures of these environments and is
also efficient in its network implementation.

This paper is organized as follows. Section 2 gives details of the Planet-
Sim framework architecture and services. We present the framework’s validation
using developed extensions in Section 3. Section 4 compares PlanetSim with re-
lated approaches, and finally we draw conclusions and present future work in
Section 5.

2 PlanetSim Architecture

The overall model comprises a discrete event simulator (time-stepped) that uses
a central step-clock to simulate timing. As we will explain in this section, most
entities in an overlay simulator are related to the routing of messages between
the nodes of the overlay. Nevertheless, overlay simulators must not forget the
underlying network that sustains the overlay and thus include appropriate ab-
stractions and mappings for both routing infrastructures.

We have decided to implement PlanetSim in Java in order to smooth the
learning curve of the framework. We aim to create a framework that is easy
to learn, easy to use, easy to extend, and easy to integrate with other frame-
works. The main drawback of this decision is the performance penalty that Java
imposes. We however have carefully profiled and optimised the code to enable
massive simulations in reasonable time.

2.1 The Common API for Structured Overlays and FreePastry

To better understand the overall architecture we must first introduce the Com-
mon API for Structured Overlays and the FreePastry implementation. We pro-
pose a novel service to be supported by overlay simulators: a façade API to
develop overlay services and applications on top of existing overlays. This API is
based on the proposed Common API (CAPI) for structured Peer-to-Peer over-
lays published in [2]. The main motivation for this decision is the plethora of
applications and services that can be built on top of structured overlays.

In [2] authors identify the Key based Routing (KBR) as the common denomi-
nator of services provided by any structured overlay. Every node in a structured
overlay is thus responsible for a number of keys in the identifier space (key’s
root), and can route messages in O(log N) hops to the keys’s root for any key.

On top of this Tier 0 KBR, structured overlays can be used to construct
services like distributed hash tables, scalable group multicast/anycast and de-
centralized object location (see Figure 1). These services in turn promise to sup-
port novel kinds of distributed applications like notification systems, messaging,



126 P. García et al.

Fig. 1. Common API Diagram

content distribution networks and cooperative replication of archival storage.
Furthermore, many traditional applications like Usenet or DNS have recently
been re-architected on top of these decentralized architectures.

The common API offers two kinds of functions: the first ones for routing and
processing messages in applications, and the second ones for accessing node’s
routing state information. The former include three kind of calls: route, forward
and deliver. The route operation delivers a message to the key’s root. Appli-
cations process messages by executing code in upcalls (forward, deliver) which
are invoked by the underlying routing system. The forward upcall is invoked at
each node that forwards a message and enables to override the default routing
behaviour. The deliver upcall is invoked on the node that is root for a key upon
the arrival of the message.

The second kind of functions for accessing node’s routing state includes lo-
cal_lookup, neighbourSet, replicaSet, update, and range. We will not explain each
function due to lack of space, but all of them give information about routing state
and identifier space information from running nodes.

Using these functions, the authors in [2] define the mapping to different over-
lay algorithms, and they also specify how to construct overlay services like DHTs,
CAST or DOLR.

The common API (CAPI) promises a unifying layer to different DHT ar-
chitectures, and thus enabling to run applications on top of different algorithms
(Chord, Pastry, Tapestry). The API is however loosely defined and each research
group is implementing its own version. This clearly hinders application interop-
erability and it only helps to improve understanding of applications in different
DHTs through a common vocabulary.

After evaluating different overlay systems, we concluded that FreePastry is
the cleanest and more advanced implementation of a structured overlay. They
offer a clean object oriented implementation of the common API in the Java
language. Besides, they have implemented several applications on top of this
API like Scribe overlay multicast, replication systems like PAST and others.
FreePastry is an active project and many research groups are using FreePastry
code to create new innovative P2P services.



PlanetSim: A New Overlay Network Simulation Framework 127

Nevertheless, FreePastry is also poorly documented and it is only extensible
at the application level. It is not possible to implement and simulate other over-
lay algorithms apart from Pastry. Because of this, we have chosen to embrace
FreePastry’s common API implementation in our framework to leverage their
existing code base and developers.

2.2 PlanetSim Layered Design

PlanetSim’s architecture comprises three main extension layers constructed one
atop another. As we can see in figure 2, overlay services are built in the appli-
cation layer using the standard Common API façade. This façade is built on
the routing services offered by the underlying overlay layer. Besides, the overlay
layer obtains proximity information to other nodes asking information to the
Network layer.

The Network layer dictates the overall life cycle of the framework by calling
the appropriate methods in the overlay’s Node and obtaining routing information
to dispatch messages through the Network. As we explain later, the Network
layer can be implemented either by the NetworkSimulator or NetworkWrapper.
Developers can thus transition from simulation to experimentation environments
in a transparent way.

We outline three main extension points (hotspots) in our framework:

• Application: Developers of overlay services like Scribe must extend the Ap-
plication class to implement the required messaging protocol. Application
methods are upcalls from the underlying layer and they notify of specific
messages. The Application code can then send or route messages using
the EndPoint (downcalls) as well as access underlying node routing state.
Any application created at this level can then be run or tested against any
structured overlay in the next layer.

• Node: Developers of overlay algorithms like Chord must extend the Node
class to implement the required overlay protocol. The node provides in-
coming and outgoing message queues that permit to create the KBR in-
frastructure required in the upper layer. At this level nodes interchange
messages using Ids and NodeHandles (IP Address + Id).

• Network: It is also possible to create customized Networks (RingNetwork,
CircularNetwork, RandomNetwork) by selecting specific Id Factories and
also to provide additional routing or proximity costs to the overall routing
infrastructure.

As a direct consequence of this layered approach we can also identify two main
user roles: ones interested in overlay services and others focused on overlay in-
frastructures. The former can thus develop and test different overlay services on
top of different KBR schemes or even probe services without even care about the
KBR layer. Other kind of users can be mainly interested in structured overlays
and thus use the simulator to probe or compare a variety of KBR algorithms.

For example, in our research group, there are researchers working at the ap-
plication layer developing new replicated DHT services, and also experimenting



128 P. García et al.

Fig. 2. PlanetSim class diagram

with query systems on top of different overlays. Another group is working at
the overlay layer to compare security problems and solutions (BadNodes) over
different overlays.

Application Layer
At this layer we have followed FreePastry’s implementation of the Common API.
In this line, the interfaces borrowed from FreePastry are Application, EndPoint,
Message, RouteMessage, Id and NodeHandle. We can see that this API is a
façade to the underlying routing system of the simulator. This layer can thus
permit very easily to test applications like DHT or Scribe multicast over different
implemented overlays like Chord or Symphony.

We outline the Application and EndPoint classes as the main implementers
of the common API. The EndPoint is a façade to the underlying overlay Node
and offers the route method and routing state methods like replicaSet or range.
The Application is a hotspot containing the methods deliver, forward and up-
date that will be invoked by the overlay layer accordingly on reception of
messages. As we can observe, Application provides upcall messages invoked
by the Node and EndPoint provides downcalls to access Node’s routing state
services.

In order to run an application (overlay service) in PlanetSim three configura-
tion files are required: the simulator properties, the overlay properties, and the
simulation properties.

To simulate an overlay we need to specify in those files a concrete Node
(ChordNode) defining the overlay protocol, a concrete IdFactory (CircularId-
Factory) and a specific Network (SimpleNetwork).



PlanetSim: A New Overlay Network Simulation Framework 129

Each node includes a configuration file specifying different configuration pa-
rameters. For example, ChordNode file can define the number of bits in the
identifier, stabilization period or other related parameters. Each Network can
also be properly tuned defining its own parameters.

Finally, when a developer prepares an overlay simulation, he must define in
a configuration file (overlay) several parameters like: Node Type (Chord, Sym-
phony), Network Type, event file, log file, and others.

Configuration information is essential to accurately tune and probe new over-
lays or services, and to validate and compare existing results. The key concept
here is that each hotspot includes its own configuration information file, and the
final execution weaves the different components that create the running overlay
testbed.

Overlay Layer
The main conceptual entity and obvious hotspot of this layer is the Node. A
node contains incoming and outgoing message queues and methods for send-
ing and receiving/processing messages. Each particular node must then include
a complete behaviour or protocol that will dictate which messages to send in
specific times and how to react to incoming messages. Furthermore, to create a
new overlay, the embedded protocol must define its own messages with specific
information to arrange the overlay. This also implies that developers should be
able to define their own message types.

At the overlay layer, the communication is bidirectional with both the appli-
cation and network layers. With the application layer, the Node notifies the Ap-
plication of received messages (upcalls) and it is invoked by the EndPoint façade
in order to route messages or obtain routing state information (downcalls).

Both the EndPoints and the Nodes exchange RouteMessage types. A Route-
Message contains source and target identifiers, as well as information regarding
the next hop in the overlay. It is also possible to modify the next hop route at
the application or overlay layers in order to alter the routing scheme.

With the network layer, the Node hotspot provides the template methods
(join, leave, fail and process) that determine the life’s cycle of every node. The
method process contains the specific protocol each node maintains to create the
overlay. Besides, every node has an incoming and an outgoing message queue;
incoming messages are parsed every step in the process method, and the send
method moves messages to the outgoing queue.

To identify nodes in the overlay, the simulator employs three main entities: Id,
IdFactory and NodeHandle. Ids are custom number types of 32 to 160 bits that
identify nodes in the overall key based routing scheme. The extensible IdFactory
permits to define custom Id generation schemes in each overlay. Additionally,
NodeHandles contain IP to Id value pairs for each node. Furthermore, a Node-
Handle provides a proximity method that queries the Network to obtain network
proximity information.

As we can see, we have many upcalls that define the Node’s life cycle and
registering of applications, and only one downcall to query the Network for
proximity between Nodes.



130 P. García et al.

Network Layer
This layer is the main actor who dictates the overall life’s cycle. The simulator
will run n simulation steps or until a specific goal (i.e. the network is stabilized)
is achieved. In each step, the simulator moves outgoing messages to incoming
queues for all nodes, and then calls the process method in each node to react to
incoming messages.

Furthermore, the simulator must process events in different steps. Events are
node joins, leaves, fails, or lookups. Events can be generated from an event file
declaratively, or programmatically using simulator APIs.

The key hotspot is the Network: it represents the underlying network that
the Simulator uses to route messages. The Network contains a mapping of Node-
Handles to Nodes that permit to correctly dispatch messages from source to
destination.

An overlay can run on top of different networks using different underlying
protocols. Developers can define their own networks, with specific protocols. The
network can also include latency or cost information, or even the topology and
arrangement of real nodes in this network. We could then implement a GT-ITM
(Georgia Tech Internetwork Topology Models) transit stub topology in a network
that would add more real information about costs and latencies.

Furthermore, each node can try to calculate its network proximity to other
node. This can be defined in a NodeHandle’s proximity method, transparently
invoking the Network’s proximity method (following FreePastry’s interface def-
inition). Developers can then decide in the network which proximity metric to
employ (ping, landmarks, etc).

Nevertheless, a simple overlay mostly focused on algorithm verification,
probably will be more interested in a very simple Network –without proxim-
ity information worsening the simulator performance–. In the current version
of PlanetSim, we only provide simple Networks like RingNetwork, or Circular-
Network that do not include latency costs. It is however feasible to incorpo-
rate Peersim [8] or Brite [5] network information to define more realistic net-
works.

An ideal case at this point could be the integration of disparate frameworks:
overlay frameworks with network simulation frameworks. The Network hotspot
and Network factory extension point would theoretically permit to create such
integration points. This is to say for example between J-sim and PlanetSim.
Nevertheless, a more thorough study must be undertaken to study the feasibility
of such integration. A C++ implementation of PlanetSim could also study the
interoperability with NS [13] for example.

Another interesting feature of the simulator is to serialize to a file the full
state of a simulation. This can be used for example, to stabilize a huge overlay
network, serialize it, and later on begin the simulation from that point. This
feature is extremely useful for large simulations and saves valuable computing
time.

Finally, the Network can be replaced by a Network Wrapper. This wrapper
then assumes the tasks of the Simulator, and it routes incoming and outgoing



PlanetSim: A New Overlay Network Simulation Framework 131

Node’s messages using appropriate TCP or UDP connections on top of a real IP
network. It is also responsible for calculating the proximity metric between nodes
and to optimize the communication channels, disconnection events and specific
timeouts of the underlying IP network. The NetworkWrapper thus allows moving
unchanged simulated code to a real Internet testbed like PlanetLab. However,
note that Network Wrapper provides different methods than Network, it does
replaces completely the simulator in the interaction with nodes. NetworkWrapper
does not include simulate a method nor inherits or implements any Network
class. Also note than we are still working in the NetworkWrapper and much
work remains to be done at this point.

3 Validation

In order to validate the PlanetSim framework we have implemented two struc-
tured overlays (Chord and Symphony) and several overlay services and appli-
cations (Scribe and DHT applications). We believe that our results confirm the
generality, accuracy, and performance of our infrastructure.

Chord [11] is a classical structured ring-based topology that assures O(log n)
lookup hops with pointers (finger table) to log (n) nodes where n is the number
of nodes in the system. Chord’s lookup mechanism is robust in the face of node
failures and re-joins but it requires a periodic and costly stabilization protocol.

Our implementation of the Chord protocol aims to be close to MIT’s Chord
specifications and our results coincide with MIT published statistics. We however
use a 32-bit address space in this paper for performance reasons –although the
simulator can be configured to use a maximum of 160 bits–.

We also implemented the Symphony [12] overlay protocol in order to compare
a deterministic approach to routing (Chord) to a probabilistic one (Symphony).
Symphony is inspired by Kleinberg’s Small World model and constructs a ring
topology where each node has few long distance links. Symphony demonstrates
that with k = O(1) links per node, it is possible to route lookups with an average
latency of O(1/k log2 n).

Fig. 3. Chord vs Symphony lookup hops



132 P. García et al.

As we can see in figure 3, both algorithms scale gracefully with the increase
in the number of nodes. Obviously, Chord performs better as a result of a bigger
routing table and deterministic routing, but Symphony is less communication
intensive with a very small maintenance algorithm. Like published results, Chord
shows an average 1/2 log2(n) function and Symphony a log2

10 (n) function.
Furthermore, we have implemented and tested an efficient overlay broadcast

algorithm [3]. We obtained the awaited results where all nodes are covered in
the broadcast process and that no redundant messages are sent.

As example application, we present here the Scribe [1] application level mul-
ticast protocol. Scribe is a large-scale and decentralized event notification system
built on top of an overlay layer. The overlay layer, originally a Pastry network
[10], is used to maintain topics and subscriptions, and to build efficient multicast
trees. Scribe’s randomized placement of topics and multicast roots balances the
load among participating nodes.

Simulation results indicate that Scribe scales well. It efficiently supports
a large number of nodes, topics, and a wide range of subscribers per topic.
Hence, Scribe can concurrently support applications with widely different char-
acteristics. Results in our simulator also show that it balances the load among
participating nodes, while achieving acceptable delay and link stress. Besides,
implementing Scribe was straightforward by leveraging original FreePastry code
based on the common API. Our layered approach also permits to test the Scribe
algorithm in different overlays like Chord or Symphony. We do not show here
graphical results due to lack of space.

3.1 Performance

One of the main goals of the PlanetSim framework is to achieve good performance
for a high number of nodes. Due to the election of the Java language, we have
been forced to spend a lot of resources in profiling and optimizing the simulator
code. Besides, we have been faced with a constant compromise between clean
designs and performing code.

Examples of such optimizations in our code are an efficient MessagePool that
reuses messages, a custom Id class avoiding the Java’s BigInteger, and static
Singletons and Factories for loading Node, Message and Application types.

We run our experiments on 3 GHz (1 Gb RAM) Pentium 4 machines running
Linux 2.4.24. We measured the time and steps required to stabilize Symphony

Fig. 4. Chord vs Symphony stabilization time



PlanetSim: A New Overlay Network Simulation Framework 133

and Chord networks of different sizes. As we can see in Figure 4, Symphony
performs much better than Chord in simulation time.

Chord needs around 8 seconds to stabilize a 1000 nodes network, 16 minutes
for 1000 nodes and 46 hours for 100000 nodes. Symphony requires 2 seconds for
1000 nodes, 98 seconds for 10000 nodes, and 1.3 hours for 100000 nodes. Note
that the bars are shown in a base 10 logarithmic scale to improve visualization.
These results clearly show that the overhead imposed by the Chord stabilization
protocol is quite big compared to Symphony’s maintenance algorithms.

We believe that these numbers demonstrate the feasibility of using Planet-
Sim for large overlays. As future work, the distributed version of the simula-
tor can even permit simulation of much higher number of nodes in an overlay
network.

4 Related Work

First of all, we distinguish between network simulators and overlay simulators.
The formers provide packet-level simulation of network protocols (TCP, UDP,
IP, etc) over realistic Internet topologies. However, congestion-aware simulation
including packet-loss and queuing delays is costly, leading to inappropriate scal-
ing numbers for big overlays. Overlay simulators are usually more interested in
evaluating overlay algorithms and its routing behaviour without even taking into
account the underlying network layer. The excessive overhead and complexity
of network simulators thus imposes an unnecessary burden to overlay evaluators
and researchers.

For example, the NS [13] network simulator provides a standard framework
for accurate simulation of network protocols. NS is appropriate to simulate net-
works in the link, switching and transport layer but it is not aimed for application
level overlays. Besides, for smaller scale scenarios NS performs gracefully, but for
overlays over a hundred nodes in size suffers considerable scaling problems. An-
other example is the J-Sim [14] network simulation framework that follows a
component oriented approach. Similar to ns-2, J-Sim is a dual-language simu-
lation environment in which classes are written in Java (for ns-2, in C++) and
“glued” together using Tcl/Java. Being easier to use than Ns-2, J-Sim also lacks
enough scalability and performance for big overlays.

Other network simulators like SFFNET and OMNET++ have also been suc-
cessfully used for peer to peer applications. Particularly, OMNET++ provides a
rich environment that enables both packet-level simulations and high-level over-
lay protocols. Nevertheless, all these network simulators are mainly aimed for
packet-level protocols, and impose additional complexity to the user learning
curve.

In the end, many research groups have created their own overlay simulators,
sacrificing accuracy for scale. Examples of these include p-sim, FreePasty, Sim-
Pastry, 3LS, PLP2P, and SimPˆ2. In the field of structured overlays, one of the
pioneers is MIT’s pspsim. This simulator currently supports many protocols,
including Chord, Koorde, Kelips, Tapestry, and Kademlia. p2psim is protocol



134 P. García et al.

extensible, and it is pretty straightforward to develop new protocols by simply
implementing the join() and lookup() low-level methods. Despite its protocol
independence, p2psim provides no interface in order to simulate higher level ap-
plications. Besides, from the software engineering perspective, this simulator is
poorly documented and difficult to extend for different purposes.

FreePastry [10], the Java open-source implementation of the Pastry struc-
tured P2P protocol includes as well, the possibility to simulate applications on
top of this overlay network. As in PlanetSim, FreePastry provides a Common
API [2] to the applications built on top of it, thus making it very easy for devel-
opers to create and simulate complex distributed applications. Protocol specific
details remain hidden from the application-level point of view. However, FreeP-
astry is highly tied to the Pastry protocol, and it does not permit simulation of
its applications on top of other structured P2P protocols.

Another interesting approach is the one followed by MACEDON [9]. Mace-
don provides an infrastructure to ease development, evaluation, and iterative
design of overlay algorithms. Applications are built using a C-like scripting lan-
guage, and code is automatically generated for TCP/IP and ns [13]. Moreover,
it follows a standard API which does not tie applications to any specific overlay
network protocol. Large-scale emulation and evaluation tools are at the devel-
oper’s disposal as well. Macedon is not limited to structured P2P networks, and
it includes an impressive variety of protocols and applications such as AMMO,
Bullet, Chord, NICE, Overcast, Pastry, Scribe, and SplitStream. Furthermore,
MACEDON simplifies development of new overlays using a finite state machine
(FSM) model for defining overlay protocols.

MACEDON is a very nice tool for overlay simulation but it follows a com-
pletely different approach than PlanetSim. MACEDON is mainly related to
Domain-specific languages (DSLs) that generate functional code from domain
specific representations. Besides, MACEDON currently supports only two types
of overlays: distributed hash tables and application level multicast. We have cre-
ated a layered and modular framework that is extensible at all levels, and that
can even be integrated with other frameworks. DSLs like MACEDON are not
designed to be extensible but instead to provide all possible functionalities and
vocabularies in the domain language.

5 Conclusions and Future Work

We have presented the PlanetSim overlay simulation/experimentation frame-
work that facilitates design and implementation of both overlay algorithms
and overlay distributed services. PlanetSim has been carefully designed to pro-
vide clean hotspots that make the framework extensible at all levels. Exten-
sibility and external integration is a main goal of our framework because we
believe that it is quite difficult to offer all the services that overlay researchers
require.

Furthermore, our adoption of FreePastry’s object oriented implementation of
the Common API for structured overlays is a key aspect to ease the transition



PlanetSim: A New Overlay Network Simulation Framework 135

from simulation code to network code and vice versa. Unlike other simulators,
we clearly distinguish between overlay algorithms (key based routing), and the
applications and services built on top of them. Another side benefit of this design
decision is that we can easily leverage FreePastry application code like Scribe
and others.

We believe that PlanetSim can be used in peer to peer research settings but
also as an educational tool to better understand overlay algorithms and services.
Besides, the Network Wrapper code permit users to easily test their designs over
the Internet using existing infrastructures like PlanetLab.

Of course, and like many other frameworks, PlanetSim can fail to attract
users and developers in the research and educational settings. There is now a
big inertia in the research arena towards custom-made simulators that solve
particular problems. This is sad because it avoids clear comparisons in a unified
platform. Besides, the framework cannot acquire critical mass without external
contributors delivering new algorithms and services.

We however plan to extend the framework to incorporate new services and
algorithms in the short term. We outline an improved overlay visualization engine
for overlay networks and services, and a distributed version of the simulator
enabling simulation of huge number of nodes (0,5M to 1M). PlanetSim is an
open source project that is being actively used in our University for research
and educational purposes. We welcome future collaborations or extensions to
the project. PlanetSim is available with full source code and GPL license in
http://ants.etse.urv.es/planet.

Acknowledgements

This work has been partially funded by the Spanish Ministry of Science and
Technology through project TIC-2003-09288-C02-00.

References

1. Castro, M., Druschel, P., et al, “Scalable Application-level Anycast for Highly Dy-
namic Groups”, Proc. of NGC’03, September 2003.

2. Dabek, F., Zhao, B.Y., Druschel, P., Kubiatowicz, J., and Stoica I., “Towards a
Common API for Structured Peer-to-Peer Overlays”, 2nd International Workshop
on Peer-to-Peer Systems, IPTPS’03, Berkeley, CA, February 2003.

3. El-Ansary, S.; Alima, L.O.; Brand, P.; et al. “Efficient Broadcast in Structured
P2P Networks”, 2nd International Workshop on Peer-to-Peer Systems, IPTPS’03,
Berkeley, CA, February 2003.

4. Gummadi, K., Saroiu, S., et al., “King: Estimating latency between arbitrary Inter-
net end hosts”, Proceedings of the 2002 SIGCOMM Internet Measurement Work-
shop. Marseille, France, November 2002.

5. Medina, A., Lakhina, A., Matta, I., et al. “BRITE: An Approach to Universal
Topology Generation”, Proceedings of the International Workshop on Modeling,
Analysis and Simulation of Computer and Telecommunications Systems (MAS-
COTS 2001). Cincinnati, Ohio, August 2001.



136 P. García et al.

6. Pairot, C., García, P., Gómez Skarmeta, A.F., “DERMI: A Decentralized Peer-to-
Peer Event-Based Object Middleware”, Proceedings of ICDCS’04, Tokyo, Japan,
pp. 236-243.

7. Pairot, C., García, P., Gómez Skarmeta, A.F., “Dermi: A New Distributed Hash
Table-based Middleware Framework”, IEEE Internet Computing, Vol. 8, No. 3,
May/June 2004, pp. 74 – 84.

8. PeerSim Peer-to-Peer Simulator. http://peersim.sourceforge.net/
9. Rodriguez, A., Killian, C., Bhat, S., et al., “MACEDON: Methodology for Auto-

matically Creating, Evaluating, and Designing Overlay Networks”, Proceedings of
the USENIX/ACM Symposium on Networked Systems Design and Implementation
(NSDI 2004), March 2004.

10. Rowstron, A., and Druschel, P., “Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems”, IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), pp. 329-350, November 2001.

11. Stoica, I., Morris, D., Karger, D., et al. “Chord: A Scalable Peer-to-peer- Lookup
Service for Internet Applications”, Proceedings of the ACM SIGCOMM 2001, San
Diego, CA, August 2001, pp. 149-160.

12. Singh, G.M., Bawa, M., Raghavan, P. “Symphony: Distributed Hashing in a Small
World”. Proceedings of USITS’03, Seattle, WA.

13. The Network Simulator – ns – 2. http://www.isi.edu/nsnam/ns/
14. J-Sim. http://www.j-sim.org/


	Introduction
	PlanetSim Architecture
	The Common API for Structured Overlays and FreePastry
	PlanetSim Layered Design 

	Validation
	Performance 

	Related Work
	Conclusions and Future Work
	Acknowledgements
	References

