
* Quick Translation by Reinout van Schouwen, reinout@cs.vu.nl, www.iids.org

Bunshin: DHT for distributed applications

Rubén Mondéjar, Pedro García, Carles Pairot *

Dept. de Matemàtiques i Informàtica
Universitat Rovira i Virgili

43007 Tarragona
{ruben.mondejar, pedro.garcia, carles.pairot}@urv.net

Abstract

We present Bunshin, a distributed hash table,
which is constructed on a p2p structured network
and is characterised by its robustness and
reliability thanks to an active system of replication
and an adaptive system of caching.
 In order to give to support to other
middleware architectures or final applications, it
offers the services of insertion and recovery of
keys/values of determinist form, allows for
multifield values for each key and manifold
contexts for each application.
 Upon these services the search engine is
founded. Based on keywords, it allows insertions
and consultations by means of this. In addition, it
incorporates mechanisms to establish
communications between keys and notifications of
new connections on the keys that are of interest to
us.

1. Introduction

Throughout the last years, Internet has been
growing in number of users. The bandwidth of the
nodes has been increased considerably and the
appearance of many applications of global scope
has popularised the use of the network of
networks. On the other hand, the computers every
time have a capacity of greater calculation and the
possibilities of compartment of resources have
happened to be more and more and more
important.
 A system based on the p2p architecture so
does not have the figure of a central node that it
controls to the others, and as it happens in the
traditional client-server architectures. The nodes
act all like equal, so that no of them assumes, a
priori, a greater protagonist than the others. In this
context, the p2p computation has unfolded a great
number of applications oriented to the

communication and collaboration, as well as
distributed computation.
 One of its basic characteristics is the high
availability, thanks to the existence of many peers
in a group, thing that it facilitates that at least peer
of the group it can satisfy a request with a user.
In the present generation of p2p networks is tried
to give solution to the commented problem, so
that the location of the resources is determinist.
 Consequently, if a resource in concrete is in
the network, then we will be able to obtain it. For
such intention, the nodes in the network are
grouped of structured way, habitually, as ring or
tree. The challenges nail of these systems are to
avoid the bottlenecks that can be produced in
certain nodes and therefore, similarly distribute
the responsibilities between the existing nodes and
to adapt to the continuous entrances and exits (and
also fallen) of nodes.
 The p2p overlay networks are efficient,
resistant to failures, and self-organising. Existing
examples of this type of systems are Chord[1],
Symphony[2], Pastry[3] or Kademlia[4]. The
decentralised p2p overlay networks also receive
the name of networks or KBR (Key Based
Routing) substrates, since the routing one of the
messages is function of the key of the nodes.

Figure 1. Basic interface of a DHT

 KBR networks provide services like
distributed hash tables (DHTs). The abstraction
which facilitates a DHT with the standard
interface put (key, value) and get (key), that we
can see in figure 1, is similar to the use of the
classic hash tables, but in this case, buckets are the
physical nodes of the network, relating the rank of
keys of these to the identifiers of the nodes to
which they belong.
 The DHT uses replication to assure that the
kept data survive the falls of the nodes and use
caching to make transitory copies and to balance
the request load on these.
In this article we will begin describing the scene
where we located ourselves and next we will
expose the architecture of Bunshin, the obtained
services that offer and results. Ultimately, we will
finalise with a discussion of works related to the
subject, of the future work and the conclusions.

2. Scenario

The scene where Bunshin is located is the Planet
project [5]. In which we took of the same one we
have developed to a series of middleware
architectures for distributed decentralised
environments. Bunshin was born of the necessity
to create persistence services in Dermi[6]. Dermi
is middleware of distributed objects constructed
upon Pastry, that in first instance used the DHT of
this one, PAST[7], for its decentralised directory
service. Because PAST did not have a reliable
implementation and that it was not easy to make
modifications, since there was to re-adapt them to
each new update, we decided to implement our
own DHT. Thanks to the experience like users of
a DHT when using PAST and to the requirements
that we saw that we needed, implemented Bunshin
(which this constructed on Pastry and like this one
benefits from the services that offer). Not only
Dermi uses Bunshin, but that from then began to
arise a series from applications in the Planet
project that made use of it. In figure 2 we can see
an example of the typical architecture of these
applications.
 Of these we can emphasise PlanetDR, a
service of decentralised repository that uses the
DHT to keep the information on the communities
and to make searches on keywords.

Figure 2. Three tiers architecture (overlay networks)

3. Architecture

The architecture of Bunshin can be divided in two
layers. The DHT application layer itself and the
layer of services that are constructed upon it. In a
following section the services of the upper layer
will be analysed, but first we will take a detailed
look at the design of the primary layer,
commenting on the following characteristics one
by one:

• Active system of replication
• Adaptive caching scheme
• Different ways of persistence
• Multifield values
• Multicontext structure

3.1. Replication

To be able to guarantee the reliability of the data
that are stored in environments as dynamic as p2p
networks, these need not only to be in the
responsible node, but there must exist more nodes
that contain the data, so that if the responsible
node leaves the network for any reason, their data
will not disappear. In order to obtain to this
objective the information it is replicated and
actively managed as will we see now.
 In order to be able to decide who will be the
nodes that keep the replica of a concrete
key/value, the responsible node chooses their
nearer neighbours, obtaining the list of successors
of the network overlay. With this it guarantees

that if the responsible node fails, his immediate
successor already will have the data that will need.
In addition, if the overlay that we used groups the
neighbours by proximity, as it is the case with
Pastry, the operations with these will be more
efficient.
 The candidates to maintain the replicas are
obtained by means of the method replicaSet(), that
the overlay network provides us, which returns the
list of ordered successive nodes of a particular
key. Thanks to her also we are warned of the
entrance or exit of the nodes by means of the
method update(). In addition, to prevent lost with
messages or the events they make the following
verifications:

1. To verify if all the keys at the moment
kept by a node still belong to him, by
means of the verification of if the
present node is the first candidate
returned by the method replicaSet(). If it
discovers that some key/value pair no
longer is its responsibility, it will
reinsert it in the network, thus arriving
at its new owner.

2. To verify if the nodes in which there are
replicas still kept follow assets, and in
addition if the number of replicas of
each key is equal to the wished number.
But some of the two conditions is
fulfilled means that there is to make
more you talk back and therefore the
necessary candidates will choose
themselves and the replicas were made
that lack.

3. Verification of which the nodes of
which we have replicas even follow
assets. But it is thus, will be made the
same procedure that when we
discovered that a key/value pair no
longer is ours. The difference in this
case is that with a much more high
probability, at the new owner it arrived
to him more than a copy of that
key/value, since all the replicas will
realise it. For this case, the criterion to
follow by the new owner is to keep the
key/value pair with newer version,
being very important in this point the
version control that is made in the
update of the values.

The version control follows a non-temporal
policy, that is to say, it does not pay attention to
the date at which the value was updated, since we
cannot assume that all peers are time-
synchronised. For it the technique that is followed
is to thus assign a number of update on an alive
copy in the system, being easy to recognise if one
replica sends a value to us previous to that which
we already have. If it concerns a copy without
version number we will assume that it is a new
update.

3.2. Caching

The keys/values copy provides two important
characteristics, being the reliability and the yield.
Since we have already commented, the reliability
and the tolerance to failures are provided by the
replication system, so to improve the yield the
technique of caching is used.
 In this case, and specially in wide-area
environments, some nodes can begin to
temporarily undergo request overload by near
clients. In order to solve this problem, the
adaptive system of caching is used, which we
now will explain. The use of these caches is
dynamic and adaptive according to the number of
requests in a period of time on a certain key/value,
thus temporary copies being created that do not
maintain the state under demand.
 In order to diminish the number of accesses to
a single node and a load balance takes place, the
owner of the key/value will send a copy so that [it
will be cached?] to the immediately previous node
from where the maximum number of requests is
received. In this manner, a temporary copy will
stay in cache and the owner will let receive
requests of that node during the time that the
cache lasts.
 If the same happened to the neighbouring
node that now has this cache, past the limit, this
one would activate a cache in the interested
neighbouring node. The idea is that the copy is
propagated in caches them of the nodes more
interested then, so that a node is not saturated
being owner of a very popular key/value, but that
activates copies near the nodes that make requests.
 In order to be able to intercept requests routed
to each node, we make use of the method
forward(). This method that the network overlay
provides serves to decide if the message must

continue to be routed or not. So we in addition it
is here where we verify if the key of the request
has value in cache in the present node. If the
consultation is satisfactory then the message will
stop being routed and the result will be sent
directly.

Figure 3. Adaptive activation of caches.

 In figure 3, we can see a summary of this
adaptive system of caching. Also it is possible to
be summarised saying that back-pressure is
applied to a technique where we obtained that the
cache propagates towards the center of interest in
a determined temporary space. Spent a time
caches them expire and if the request bursts
already have stopped, caches them they will be
deactivated.

3.3. Persistence modes

Bunshin have been designed with the extensibility
in mind and therefore it supports different ways of
persistence:

• Memory
• Disc
• FileMapping

 The way of persistence in memory is
appropriate for the replicated data or in cache and
also for the data of applications of test.
 The standard way would be the way of disc
persistence, keeping all the data from a context in
an assigned directory. Most interesting it has to

emphasise is the FileMapping that being based on
the previous one, this mechanisms allow to map
the files in the original state in which they were
inserted in Bunshin.
 This way of persistence is very useful for
applications that they want to accede directly to
the files. We have for example the case of Snap,
that it is a decentralised portal constructed upon a
p2p structured network, that gives to support to
Web applications, where one of them, a
collaboration space uses Bunshin like persistence
service of the Web server and where it inserts
documents, which interests to him that they are
accessible by means of a Web client.

3.4. Multicontext and Multifield

Bunshin is not a conventional DHT, in the
key/value sense of structuring, but in addition it
provides, optionally, the possibility of treating the
data as if they were a hash table too, that is to say,
that stops a key we can have so many values as we
want, identified with a subkey that we called field.
 The other possibility, at a higher level of
abstraction, is to be able to see a node not only
like the container of one bucket, but of so many as
we need. Then for us bucket this within a context,
and thus in case the different application needed
to have buckets will be forced to instantiate a
Bunshin application for each one of them, but that
exclusively it will have to indicate in the context
where it wants to work.
 In summary, we arrange if N buckets with
values of M fields are necessary, depending on the
necessities of the applications.

4. Search engine

Since already we have commented in the previous
section, the architecture of Bunshin provides a
superior layer where are the services to part of the
basic ones of DHT. BunshinSearch is constructed
upon Bunshin and uses the explained services
previously to provide his:

• Services by keywords
• Connections between keys
• Notification of connections

 Next we will detail each one of these services
and the interface that each one provides.
 For the services by keywords indexing by
means of tables of distributed inverted indices is
used. The interface that provides east service is
similar to the basic interface of a DHT but
introducing the concept of key word. The method
insert(keywords, key, value), is in charge to insert
the key/value and to update the tables of inverted
indices corresponding to the keywords. On the
other hand, the method query(keywords) is used
to recover the keys that are bound at least to one
of the keywords of the consultation. As a result,
all the keys will be given back to us that fulfil the
condition, ordered by the number of coincidences
of keywords. Finally we have the method
remove(keywords, id), that eliminates the
key/value and in addition it modifies the tables of
indices of each keyword.
 Aside from PlanetDR, we have other
implemented applications that make use exclusive
of this service, as the case of our decentralised
search application. This application makes
periodic verifications in search of pages Web and
its contents, inserting the meta-information
generated in Bunshin. The criterion of selection of
keywords is similar to the one of a conventional
search application, selecting the keywords
between the repeated words more in the document
or also between most significant of the metadata,
if it has of labels with meta-information.
 Thanks to the multifield values we can
diversify the key/value concept so that it allows us
to offer the link service. This service adds two
extra fields to a concrete key. These two new
fields have as value the lists of the incoming links
and outgoing links for their corresponding key.
 In order to add the links we have the method
addLinks (key, links) and removeLinks(key, links)
to eliminate them, automatically process the both
types of links (incoming or outgoing). To query
links we have the methods getIncomingLinks(key)
and getOutgoingLinks(key).
 Following with the previous example of the
search application, also from the reading of the
anchor of the Web, BunshinSearch can connect
the keys of the inserted metadata. At the time of
returning results thanks to be able to consult the
information of hyperlinks of each Web, it will be
able in addition to modify adding them the
criterion of number of hyperlinks or important

hyperlinks, making a considered calculation
previously similar to the PageRank from
Google[8].
 Finally and complementing the previous
service, we have the link notification service.
This service offers to the applications the
possibility of being notified when a key is
connected. As a result, first the notification
request is made on key A, and next, when adding
the link to the key B towards the key A, is made
the notification corresponding to this event.
 Following the model of standard delegation of
Java, the methods of this service are,
setLinkListener(id, listener) to assign to a notifier
and removeLinkListener(id, listener) to eliminate
it. Such fact allows us to be informed on the
entrance connections that are added to a key in
individual.
 This service is useful for the applications
where it interests to us to have the news on
connections to concrete values, like for example
an application similar to OverCite[9], an
application based on DHT where the focus is
centred in the publication of scientific articles.

5. Validation

Bunshin is a quite mature system since it has been
proven in multitude of applications and we have
made as much simulations as experimental tests in
PlanetLab[10].
 In order to validate the reliability that provides
the system of replication of Bunshin, we have
simulated the creation of a key/value network of
1000 nodes and inserted 1000 pairs randomly, as
much the key as the node from where we inserted.
For this simulation we have used our own
PlanetSim[11] simulator using a Chord overlay
network. For each key/value six replicas are made
(including the main copy in the successive node).
 After insertions, we cause that a fraction of
nodes fails and falls of the network, without
possibility of warning nor of making the
movement of keys. We can see in figure 4 that
these results are very similar to those of CFS[12],
validating our approach.

Figure 4. Percentage of requests no satisfied as
opposed to the percentage of fallen nodes.
Indicating the error bar the minimum and the
maximum, and marking the average, of the 5 made
tests.

 We can observe that they do not begin to have
failures in the consultations until 20% of the
nodes have fallen and also that the failures are
very few until the fallen nodes do not ascend to
35%. The failures begin to be considerable when
the six made copies are lost. For example, if 50%
of the nodes fall, the possibility of losing a
key/value completely is very low, 0,56 = 0,0016,
seemed to the results obtained in the test, the
average of which, it is of 0.010.

6. Related work

CFS is a system of cooperative file constructed
upon the network overlay Chord. It offers the
basic services of a DHT, and maintains replicas
and caches. CFS this oriented to the storage of
blocks and upon is constructed a conventional
system of files similar to the UNIX system. Each
block is kept in multiple focused Chord nodes that
this in storing blocks of data. It does not offer
other services like could be a search engine,
although if that uses a system of authentication of
public key.
 PAST follows a philosophy similar to CFS,
but in the Pastry overlay. It tries to improve the
system of CFS in storage of files and caching,
helping itself of the services that Pastry overlay

offers, as they are a greater efficiency and
proximity of the keys. It offers a system of
certificate files for the basic operations. It does not
offer another type of services either.
 Main the difference with CFS and PAST is
that Bunshin so is not focused in offering a service
of distributed file systems, but to offer more
variety of services than they are interesting at the
time of using a DHT from the point of view of the
application programmer.

7. Future work and conclusions

In this article we have presented Bunshin,
which gives an approach different from the
conventional DHT, with the characteristics of an
active system of replication and adaptive system
of caching, equipping it with more flexibility, as
they are the characteristics of multicontext and
multifield, and with a service of searches of
keywords, of connected of keys, and notification
of new connections.

Aside from the services offered by Bunshin
that extend the classic interface of the DHTs, it is
possible to be extended or also to be extended
with other future functionalities. An example
could be that for the service of notification of
connections if were complemented with a service
of propagation of events, like for example
Scribe[13], could cause that a single event of this
service propagated efficiently in a group of peers
interested.

Another remark is the security service that
Bunshin offers at the time of conducting the basic
operations. This service is suitable to as much
equip with privacy the pairs keys/values in the
insertions, as in the modifications or the
consultations of these. At the moment, we used a
system of verification with symmetrical key but
shortly one will begin has to use a scheme of
asymmetric key stops to encrypt and to decrypt
these values with the public and private keys of
the users.
 In addition we have made, and we continue to
make, numerous tests in PlanetLab to correctly
purify and to prove all the functionalities and to
thus support its good operation. Let us think that
Bunshin provides interesting and novel services to
the decentralised application programmer p2p.

Acknowledges

 Financed for the Ministry of Science and
Technology of Spain, TIC2003-09288-C02-00

References

[1] Stoica I., Morris R., Karger D., Kassshoek
M.F. y Balakrishanan H. Chord: A Scalable
Peer-to-Peer Lookup Service for Internet
Applications. ACM SIGCOMM, pp. 149-160.
Agosto 2001.

[2] Manku G.S., Bawa M. y Raghavan P.
Symphony: Distributed Hashing in a Small
World. USENIX Symposium on Internet
Technologies and Systems (USITS). Marzo
2003.

[3] Rowstron A. y Druschel P. Pastry: Scalable,
distributed object location and routing for
large-scale peer-to-peer systems. IFIP/ACM
International Conference on Distributed
Systems Platforms (Middleware), pp 329-350.
Noviembre 2001.

[4] Maymounkov P. y Mazières D.
Kademlia: A Peer-to-Peer Information System
Based on the XOR Metric. International
Workshop on Peer-to-Peer Systems (IPTPS),
pp 53-65. Marzo 2002.

[5] Pairot .C, García P., Rallo R., Blat J. y
Skarmeta A.F. The Planet Project:
Collaborative Educational Content
Repositories on Structured Peer-to-Peer Grids.
ACM/IEEE CCGrid 2005. Second
International Workshop on Collaborative and
Learning Applications of Grid Technology
and Grid Education (CLAG). Mayo 2005.

[6] Pairot C., García P. y Skarmeta A.F. Dermi: A

New Distributed Hash Table-based
Middleware Framework. IEEE Internet
Computing. Vol 8, No. 3, pp. 74-84.
Mayo/Junio 2004.

[7] Rowstron A. y Druschel P. Storage
management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility.
ACM Symposium on Operating Systems
Principles (SOSP). Octubre 2001.

[8] Brin S. y Page L. The anatomy of a large-scale
hypertextual web search engine. International
World Wide Web Conference (WWW). Abril
1998.

[9] Stribling J., Councill I. Li J., Kaashoek M.F.,
Karger D.R., Morris R. y Shenker S.
OverCite: A Cooperative Digital Research
Library. International Workshop on Peer-to-
Peer Systems (IPTPS). Febrary 2005.

[10] PlanetLab Website, http://www.planet-lab.org/
[11] García P., Pairot C., Mondéjar R., Pujol J.,

Tejedor H. y Rallo R. PlanetSim: A New
Overlay Network Simulation Framework.
Lecture Notes in Computer Science (LNCS),
Software Engineering and Middleware
(SEM).Vol. 3437, pp. 123-137. Marzo 2005.

[12] Dabek F., Kaashoek M. F., Karger D., Morris
R. y Stoica I. Wide-area cooperative storage
with CFS. Proceedings ACM Symposium on
Operating Systems Principles (SOSP).
Octubre 2001.

[13] Castro M., Druschel P., Kermarrec A.M. y
Rowstron A. SCRIBE: A large-scale and
decentralised application-level multicast
infrastructure. IEEE Journal on Selected Areas
in Communication (JSAC), Vol. 20, No 8.
Octubre 2002.

[14] Bunshin Website, http://ants.etse.urv.es/bunshin

